Microtubular stability affects cardiomyocyte glycolysis by HIF-1alpha expression and endonuclear aggregation during early stages of hypoxia.

نویسندگان

  • Miao Teng
  • Yong-Ming Dang
  • Jia-ping Zhang
  • Qiong Zhang
  • Ya-dong Fang
  • Jun Ren
  • Yue-sheng Huang
چکیده

Hypoxia-inducible factor (HIF)-1alpha is a key regulator of anaerobic energy metabolism. We asked the following question: Does the breakdown of microtubular structures influence glycolysis in hypoxic cardiomyocytes by regulating HIF-1alpha? Neonatal rat cardiomyocytes were cultured under hypoxic conditions, while microtubule-stabilizing (paclitaxel) and -depolymerizing (colchicine) agents were used to change microtubular structure. Models of high microtubule-associated protein 4 (MAP4) expression and RNA interference of microtubulin expression were established. Microtubular structural changes and intracellular HIF-1alpha protein distribution were observed with laser confocal scanning microscopy. Content of key glycolytic enzymes, viability, and energy content of cardiomyocytes were determined by colorimetry and high-performance liquid chromatography. HIF-1alpha protein content and mRNA expression were determined by Western blotting and real-time PCR, respectively. Low doses of microtubule-stabilizing agent (10 mumol/l paclitaxel) and enhanced expression of MAP4 stabilized the reticular microtubular structures in hypoxic cardiomyocytes, increased the content of key glycolytic enzymes, ameliorated energy supply and enhanced cell viability, and upregulated HIF-1alpha protein expression and endonuclear aggregation. In contrast, the microtubule-depolymerizing agent (10 mumol/l colchicine) or reduced microtubulin expression had adverse affects on the same parameters, in particular, HIF-1alpha protein content and endonuclear aggregation. We conclude that microtubular structural changes influence glycolysis in the early stages of hypoxia in cardiomyocytes by regulating HIF-1alpha content. Stabilizing microtubular structures increases endonuclear and total HIF-1alpha expression, content of key glycolytic enzymes, and energy supply. These findings provide potential therapeutic targets for ameliorating cell energy metabolism during early myocardial hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubular stability affects cardiomyocyte glycolysis by HIF-1 expression and endonuclear aggregation during early stages of hypoxia

Teng M, Dang YM, Zhang JP, Zhang Q, Fang YD, Ren J, Huang YS. Microtubular stability affects cardiomyocyte glycolysis by HIF-1 expression and endonuclear aggregation during early stages of hypoxia. Am J Physiol Heart Circ Physiol 298: H1919–H1931, 2010. First published March 12, 2010; doi:10.1152/ajpheart.01039.2009.—Hypoxia-inducible factor (HIF)-1 is a key regulator of anaerobic energy metabo...

متن کامل

Microtubular Stability Affects pVHL-Mediated Regulation of HIF-1alpha via the p38/MAPK Pathway in Hypoxic Cardiomyocytes

BACKGROUND Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protei...

متن کامل

Role of Ran-regulated nuclear-cytoplasmic trafficking of pVHL in the regulation of microtubular stability-mediated HIF-1α in hypoxic cardiomyocytes

Our previous study suggested that microtubule network alteration affects the process of glycolysis in cardiomyocytes (CMs) via the regulation of hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known regarding the underlying mechanisms of microtubule network alteration-induced changes of HIF-1α. The von Hippel-Lindau tumor suppressor protein (pVHL) has be...

متن کامل

The key role of microtubules in hypoxia preconditioning-induced nuclear translocation of HIF-1α in rat cardiomyocytes

BACKGROUND Hypoxia-inducible factor (HIF)-1 is involved in the regulation of hypoxic preconditioning in cardiomyocytes. Under hypoxic conditions, HIF-1α accumulates and is translocated to the nucleus, where it forms an active complex with HIF-1β and activates transcription of approximately 60 kinds of hypoxia-adaptive genes. Microtubules are hollow tubular structures in the cell that maintain c...

متن کامل

Regulation of the Warburg effect in early-passage breast cancer cells.

Malignancy in cancer is associated with aerobic glycolysis (Warburg effect) evidenced by increased trapping of [(18)F]deoxyglucose (FdG) in patients imaged by positron emission tomography (PET). [(18)F]deoxyglucose uptake correlates with glucose transporter (GLUT-1) expression, which can be regulated by hypoxia-inducible factor 1 alpha (HIF-1alpha). We have previously reported in established br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010